
P U B L I S H I N G

community experience dist i l led

Python 3 Object Oriented
Programming

Dusty Phillips

Chapter No.7

"Python Object-oriented Shortcuts"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.7 "Python Object-oriented Shortcuts"

A synopsis of the book’s content

Information on where to buy this book

About the Author
Dusty Phillips is a Canadian freelance software developer, teacher, martial artist, and

open source aficionado. He is closely affiliated with the Arch Linux community and other

open source projects. He maintains the Arch Linux storefronts, and compiled the popular

Arch Linux Handbook. Dusty holds a Master's degree in Computer Science specializing

in Human-Computer Interaction. He currently has six different Python interpreters

installed on his computer.

I would like to thank my editors, Steven Wilding and Mayuri Kokate for well-timed

encouragement and feedback. Many thanks to friend and mentor Jason Chu for getting

me started in Python and for patiently answering numerous questions on Python, GIT,

and life over the years. Thanks to my father, C. C. Phillips, for inspiring me to write

while editing his terrific works of fiction. Finally, thanks to every person who has said

they can't wait to buy my book; your enthusiasm has been a huge motivational force.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python 3 Object Oriented
Programming
This book will introduce you to the terminology of the object-oriented paradigm,

focusing on object-oriented design with step-by-step examples. It will take you from

simple inheritance, one of the most useful tools in the object-oriented programmer's

toolbox, all the way through to cooperative inheritance, one of the most complicated. You

will be able to raise, handle, define, and manipulate exceptions.

You will be able to integrate the object-oriented and not-so-object-oriented aspects of

Python. You will also be able to create maintainable applications by studying higherlevel

design patterns. You'll learn the complexities of string and fi le manipulation and how

Python distinguishes between binary and textual data. Not one, but two very powerful

automated testing systems will be introduced to you. You'll understand the joy of unit

testing and just how easy unit tests are to create. You'll even study higher-level libraries

such as database connectors and GUI toolkits and how they apply object-oriented

principles.

What This Book Covers
Chapter 1, Object-oriented Design covers important object-oriented concepts. It deals

mainly with abstraction, classes, encapsulation, and inheritance. We also briefly look into

UML to model our classes and objects.

Chapter 2, Objects in Python discusses classes and objects and how they are used in

Python. We will learn about attributes and behaviors in Python objects, and also the

organization of classes into packages and modules. And lastly we shall see how to protect

our data.

Chapter 3, When Objects are Alike gives us a more in-depth look into inheritance. It

covers multiple inheritance and shows us how to inherit from built-ins. This chapter also

covers polymorphism and duck typing.

Chapter 4, Expecting the Unexpected looks into exceptions and exception handling. We

shall learn how to create our own exceptions. It also deals with the use of exceptions for

program flow control.

Chapter 5, When to Use Object-oriented Programming deals with objects; when to create

and use them. We will see how to wrap data using properties, and restricting data access.

This chapter also discusses the DRY principle and how not to repeat code.

Chapter 6, Python Data Structures covers object-oriented features of data structures. This

chapter mainly deals with tuples, dictionaries, lists, and sets. We will also see how to

extend built-in objects.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7, Python Object-oriented Shortcuts as the name suggests, deals with little time-

savers in Python. We shall look at many useful built-in functions, then move on to using

comprehensions in lists, sets, and dictionaries. We will learn about generators, method

overloading, and default arguments. We shall also see how to use functions as objects.

Chapter 8, Python Design Patterns I first introduces us to Python design patterns. We

shall then see the decorator pattern, observer pattern, strategy pattern, state pattern,

singleton pattern, and template pattern. These patterns are discussed with suitable

examples and programs implemented in Python.

Chapter 9, Python Design Patterns II picks up where the previous chapter left us. We

shall see the adapter pattern, facade pattern, flyweight pattern, command pattern, abstract

pattern, and composite pattern with suitable examples in Python.

Chapter 10, Files and Strings looks at strings and string formatting. Bytes and byte arrays

are also discussed. We shall also look at fi les, and how to write and read data to and from

fi les. We shall look at ways to store and pickle objects, and finally the chapter discusses

serializing objects.

Chapter 11, Testing Object-oriented Programs opens with the use of testing and why

testing is so important. It focuses on test-driven development. We shall see how to use

the unittest module, and also the py.test automated testing suite. Lastly we shall

cover code coverage using coverage.py.

Chapter 12, Common Python 3 Libraries concentrates on libraries and their utilization in

application building. We shall build databases using SQLAlchemy, and user interfaces

TkInter and PyQt. The chapter goes on to discuss how to construct XML documents and

we shall see how to use ElementTree and lxml. Lastly we will use CherryPy and Jinja to

create a web application.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented
Shortcuts

Now let's look at some aspects of Python that appear more reminiscent of
structural or functional programming than object-oriented programming. Although
object-oriented programming is the most popular kid on the block these days, the old
paradigms still offer useful tools. Most of these tools are really syntactic sugar over
an underlying object-oriented implementation; we can think of them as a further
abstraction layer built on top of the (already abstracted) object-oriented paradigm.
In this chapter we'll be covering:

Built-in functions that take care of common tasks in one call
List, set, and dictionary comprehensions
Generators
An alternative to method overloading
Functions as objects

Python built-in functions
 There are numerous functions in Python that perform a task or calculate a result
on certain objects without being methods on the class. Their purpose is to abstract
common calculations that apply to many types of classes. This is applied duck
typing; these functions accept objects with certain attributes or methods that satisfy
a given interface, and are able to perform generic tasks on the object.

•

•

•

•

•

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[192]

Len
 The simplest example is the len() function. This function counts the number of
items in some kind of container object such as a dictionary or list. For example:

>>> len([1,2,3,4])

4

Why don't these objects have a length property instead of having to call a function
on them? Technically, they do. Most objects that len() will apply to have a method
called __len__() that returns the same value. So len(myobj) seems to call
myobj.__len__().

Why should we use the function instead of the method? Obviously the method is a
special method with double-underscores suggesting that we shouldn't call it directly.
There must be an explanation for this. The Python developers don't make such
design decisions lightly.

The main reason is effi ciency. When we call __len__ on an object, the object has
to look the method up in its namespace, and, if the special __getattribute__
method (which is called every time an attribute or method on an object is accessed)
is defi ned on that object, it has to be called as well. Further __getattribute__ for
that particular method may have been written to do something nasty like refusing
to give us access to special methods such as __len__! The len function doesn't
encounter any of this. It actually calls the __len__ function on the underlying class,
so len(myobj) maps to MyObj.__len__(myobj).

Another reason is maintainability. In the future, the Python developers may want to
change len() so that it can calculate the length of objects that don't have a __len__,
for example by counting the number of items returned in an iterator. They'll only
have to change one function instead of countless __len__ methods across the board.

Reversed
 The reversed() function takes any sequence as input, and returns a copy of that
sequence in reverse order. It is normally used in for loops when we want to loop
over items from back to front.

Similar to len, reversed calls the __reversed__() function on the class for the
parameter. If that method does not exist, reversed builds the reversed sequence
itself using calls to __len__ and __getitem__. We only need to override
__reversed__ if we want to somehow customize or optimize the process:

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[193]

normal_list=[1,2,3,4,5]

class CustomSequence():
 def __len__(self):

 return 5

 def __getitem__(self, index):

 return "x{0}".format(index)

class FunkyBackwards(CustomSequence):
 def __reversed__(self):

 return "BACKWARDS!"

for seq in normal_list, CustomSequence(), FunkyBackwards():
 print("\n{}: ".format(seq.__class__.__name__), end="")
 for item in reversed(seq):
 print(item, end=", ")

 The for loops at the end print the reversed versions of a normal list, and instances
of the two custom sequences. The output shows that reversed works on all three of
them, but has very different results when we defi ne __reversed__ ourselves:

list: 5, 4, 3, 2, 1,
CustomSequence: x4, x3, x2, x1, x0,
FunkyBackwards: B, A, C, K, W, A, R, D, S, !,

Note: the above two classes aren't very good sequences, as they don't
defi ne a proper version of __iter__ so a forward for loop over them
will never end.

Enumerate
 Sometimes when we're looping over an iterable object in a for loop, we want access
to the index (the current position in the list) of the current item being processed.
The for loop doesn't provide us with indexes, but the enumerate function gives us
something better: it creates a list of tuples, where the fi rst object in each tuple is the
index and the second is the original item.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[194]

This is useful if we want to use index numbers directly. Consider some simple code
that outputs all the lines in a fi le with line numbers:

import sys
filename = sys.argv[1]

with open(filename) as file:
 for index, line in enumerate(file):

 print("{0}: {1}".format(index+1, line), end='')

Running this code on itself as the input fi le shows how it works:

1: import sys
2: filename = sys.argv[1]
3:
4: with open(filename) as file:
5: for index, line in enumerate(file):
6: print("{0}: {1}".format(index+1, line), end='')

 The enumerate function returns a list of tuples, our for loop splits each tuple into
two values, and the print statement formats them together. It adds one to the index
for each line number, since enumerate, like all sequences is zero based.

Zip
 The zip function is one of the least object-oriented functions in Python's collection.
It takes two or more sequences and creates a new sequence of tuples. Each tuple
contains one element from each list.

This is easily explained by an example; let's look at parsing a text fi le. Text data is
often stored in tab-delimited format, with a "header" row as the fi rst line in the fi le,
and each line below it describing data for a unique record. A simple contact list in
tab-delimited format might look like this:

first last email
john smith jsmith@example.com
jane doan janed@example.com
david neilson dn@example.com

A simple parser for this fi le can use zip to create lists of tuples that map headers to
values. These lists can be used to create a dictionary, a much easier object to work
with in Python than a fi le!

import sys
filename = sys.argv[1]

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[195]

contacts = []
with open(filename) as file:
 header = file.readline().strip().split('\t')
 for line in file:
 line = line.strip().split('\t')
 contact_map = zip(header, line)

 contacts.append(dict(contact_map))

for contact in contacts:
 print("email: {email} -- {last}, {first}".format(
 **contact))

What's actually happening here? First we open the fi le, whose name is provided
on the command line, and read the fi rst line. We strip the trailing newline, and
split what's left into a list of three elements. We pass '\t' into the strip method to
indicate that the string should be split at tab characters. The resulting header list
looks like ["first", "last", "email"].

 Next, we loop over the remaining lines in the fi le (after the header). We split each
line into three elements. Then, we use zip to create a sequence of tuples for each
line. The fi rst sequence would look like [("first", "john"), ("last", "smith"),
("email", "jsmith@example.com")].

Pay attention to what zip is doing. The fi rst list contains headers; the second contains
values. The zip function created a tuple of header/value pairs for each matchup.

The dict constructor takes the list of tuples, and maps the fi rst element to a key and
the second to a value to create a dictionary. The result is added to a list.

At this point, we are free to use dictionaries to do all sorts of contact-related
activities. For testing, we simply loop over the contacts and output them in a
different format. The format line, as usual, takes variable arguments and keyword
arguments. The use of **contact automatically converts the dictionary to a bunch
of keyword arguments (we'll understand this syntax before the end of the chapter)
Here's the output:

email: jsmith@example.com -- smith, john
email: janed@example.com -- doan, jane
email: dn@example.com -- neilson, david

If we provide zip with lists of different lengths, it will stop at the end of the shortest
list. There aren't many useful applications of this feature, but zip will not raise an
exception if that is the case. We can always check the list lengths and add empty
values to the shorter list, if necessary.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[196]

The zip function is actually the inverse of itself. It can take multiple sequences and
combine them into a single sequence of tuples. Because tuples are also sequences,
we can "unzip" a zipped list of tuples by zipping it again. Huh? Have a look at
this example:

>>> list_one = ['a', 'b', 'c']

>>> list_two = [1, 2, 3]

>>> zipped = zip(list_one, list_two)

>>> zipped = list(zipped)

>>> zipped

[('a', 1), ('b', 2), ('c', 3)]

>>> unzipped = zip(*zipped)

>>> list(unzipped)

[('a', 'b', 'c'), (1, 2, 3)]

First we zip the two lists and convert the result into a list of tuples. We can then use
parameter unpacking to pass these individual sequences as arguments to the zip
function. zip matches the fi rst value in each tuple into one sequence and the second
value into a second sequence; the result is the same two sequences we started with!

Other functions
 Another key function is sorted(), which takes an iterable as input, and returns a
list of the items in sorted order. It is very similar to the sort() method on lists, the
difference being that it works on all iterables, not just lists.

Like list.sort, sorted accepts a key argument that allows us to provide a function
to return a sort value for each input. It can also accept a reverse argument.

Three more functions that operate on sequences are min, max, and sum. These each
take a sequence as input, and return the minimum or maximum value, or the sum of
all values in the sequence. Naturally, sum only works if all values in the sequence are
numbers. The max and min functions use the same kind of comparison mechanism as
sorted and list.sort, and allow us to defi ne a similar key function. For example,
the following code uses enumerate, max, and min to return the indices of the values
in a list with the maximum and minimum value:

def min_max_indexes(seq):
 minimum = min(enumerate(seq), key=lambda s: s[1])
 maximum = max(enumerate(seq), key=lambda s: s[1])
 return minimum[0], maximum[0]

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[197]

The enumerate call converts the sequence into (index, item) tuples. The lambda
function passed in as a key tells the function to search the second item in each
tuple (the original item). The minimum and maximum variables are then set to the
appropriate tuples returned by enumerate. The return statement takes the fi rst
value (the index from enumerate) of each tuple and returns the pair. The following
interactive session shows how the returned values are, indeed, the indices of the
minimum and maximum values:

>>> alist = [5,0,1,4,6,3]

>>> min_max_indexes(alist)

(1, 4)

>>> alist[1], alist[4]

(0, 6)

We've only touched on a few of the more important Python built-in functions. There
are numerous others in the standard library, including:

all and any, which accept an iterable and returns True if all, or any, of the
items evaluate to true (that is a non-empty string or list, a non-zero number,
an object that is not None, or the literal True).
eval, exec, and compile, which execute string as code inside the interpreter.
hasattr, getattr, setattr, and delattr, which allow attributes on an
object to be manipulated as string names.
And many more! See the interpreter help documentation for each of the
functions listed in dir(__builtins__).

Comprehensions
 We've already seen a lot of Python's for loop. It allows us to loop over any object
that supports the iterable protocol and do something specifi c with each of the
elements in turn.

Supporting the iterable protocol simply means an object has an __iter__ method
that returns another object that supports the iterator protocol. Supporting the iterator
protocol is a fancy way of saying it has a __next__ method that either returns the
next object in the sequence, or raises a StopIteration exception when all objects
have been returned.

•

•

•

•

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[198]

As you can see, the for statement, in spite of not looking terribly object-oriented,
is actually a shortcut to some extremely object-oriented designs. Keep this in mind
as we discuss comprehensions, as they, too, appear to be the polar opposite of an
object-oriented tool. Yet, they use the same iteration protocol as for loops. They're
just another kind of shortcut.

List comprehensions
 List comprehensions are one of the most powerful tools in Python, so people tend
to think of them as advanced. They're not. Indeed, I've taken the liberty of littering
previous examples with comprehensions and assuming you'd understand them.
While it's true that advanced programmers use comprehensions a lot, it's not because
they're advanced, it's because they're trivial, and handle some of the most common
operations in programming.

Let's have a look at one of those common operations, namely, converting a list of
items into a list of related items. Specifi cally, let's assume we just read a list of strings
from a fi le, and now we want to convert it to a list of integers; we know every item in
the list is an integer, and we want to do some activity (say, calculate an average) on
those numbers. Here's one simple way to approach it:

input_strings = ['1', '5', '28', '131', '3']

output_integers = []
for num in input_strings:

 output_integers.append(int(num))

This works fi ne, it's only three lines of code. If you aren't used to comprehensions,
you may not even think it looks ugly! Now, look at the same code using a list
comprehension:

input_strings = ['1', '5', '28', '131', '3']

output_integers = [int(num) for num in input_strings]

We're down to one line and we've dropped an append method call. Overall, it's
pretty easy to tell what's going on, even if you're not used to comprehension syntax.

 The square brackets show we're creating a list. Inside this list is a for loop that loops
over each item in the input sequence. The only thing that may be confusing is what's
happening between the list's opening brace and the start of the for loop. Whatever
happens here is applied to each of the items in the input list. The item in question is
referenced by the num variable from the loop. So it's converting each such item to
an int.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[199]

That's all there is to a basic list comprehension. They are not so advanced, after all!
Comprehensions are highly optimized; list comprehensions are far faster than for
loops when we are looping over a huge number of items. If readability alone isn't a
convincing reason to use them as much as possible, then speed should be.

Converting one list of items into a related list isn't the only thing we can do with a
list comprehension. We can also choose to exclude certain values by adding an if
statement inside the comprehension. Have a look:

output_ints = [int(n) for n in input_strings if len(n) < 3]

I shortened the name of the variable from num to n and the result variable to output_
ints so it would still fi t on one line. Other than that, all that's different between this
example and the previous one is the if len(n) < 3 part. This extra code excludes any
strings with more than two characters. The if statement is applied before the int
function, so it's testing the length of a string. Since our input strings are all integers
at heart, it refers to any number over ninety-nine. Now that is all there is to list
comprehensions! We use them to map input values to output values, applying a
fi lter along the way to exclude any values that don't meet a specifi c condition.

Any iterable can be the input to a list comprehension; anything we can wrap in
a for loop can also be placed inside a comprehension. For example, text fi les are
iterable; each call to __next__ on the fi le's iterator will return one line of the fi le.
The contact fi le example we used earlier (to try out the zip function) can use a list
comprehension instead:

import sys
filename = sys.argv[1]

with open(filename) as file:
 header = file.readline().strip().split('\t')
 contacts = [

 dict(

 zip(header, line.strip().split('\t'))

) for line in file

]

This time, I've added some whitespace to make it more readable (list comprehensions
don't have to fi t on one line). This example is doing the same thing as the previous
version: creating a list of dictionaries from the zipped header and split lines for each
line in the fi le.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[200]

 Er, what? Don't worry if that code or explanation doesn't make sense; it's a bit
confusing. One little list comprehension is doing a pile of work here, and the code
is hard to understand, read, and ultimately, maintain. This example shows that list
comprehensions aren't always the best solution; most programmers would agree that
the earlier for loop is more readable than this version. Remember: the tools we are
provided with should not be abused! Always pick the right tool for the job, and that
job is writing maintainable code.

Set and dictionary comprehensions
 Comprehensions aren't restricted to lists. We can use a similar syntax with braces to
create sets and dictionaries as well. Let's start with sets. One way to create a set is to
wrap a list comprehension in the set() constructor, which converts it to a set. But
why waste memory on an intermediate list that gets discarded when we can create a
set directly?

Here's an example that uses a named tuple to model author/title/genre triads, and
then retrieves a set of all the authors that write in a specifi c genre:

from collections import namedtuple

Book = namedtuple("Book", "author title genre")
books = [
 Book("Pratchett", "Nightwatch", "fantasy"),
 Book("Pratchett", "Thief Of Time", "fantasy"),
 Book("Le Guin", "The Dispossessed", "scifi"),
 Book("Le Guin", "A Wizard Of Earthsea", "fantasy"),
 Book("Turner", "The Thief", "fantasy"),
 Book("Phillips", "Preston Diamond", "western"),
 Book("Phillips", "Twice Upon A Time", "scifi"),
]

fantasy_authors = {

 b.author for b in books if b.genre == 'fantasy'}

That set comprehension sure is short in comparison to the set up required! If we'd
used a list comprehension, of course, Terry Pratchett would have been listed twice.
As it is, the nature of sets removes the duplicates and we end up with:

>>> fantasy_authors

{'Turner', 'Pratchett', 'Le Guin'}

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[201]

 We can introduce a colon to create a dictionary comprehension. This converts a
sequence into a dictionary using key : value pairs. For example, it may be useful to
quickly look up the author or genre in a dictionary if we know the title. We can use a
dictionary comprehension to map titles to book objects:

fantasy_titles = {
 b.title: b for b in books if b.genre == 'fantasy'}

Now we have a dictionary and can look up books by title using the normal syntax.

In summary, comprehensions are not advanced Python, and they aren't "non-
object-oriented" tools that should be avoided. They are simply a more concise and
optimized syntax for creating a list, set, or dictionary from an existing sequence.

Generator expressions
 Sometimes we want to process a new sequence without placing a new list, set,
or dictionary into system memory. If we're just looping over items one at a time,
and don't actually care about having a fi nal container object created, creating that
container is a waste of memory. When processing one item at a time, we only need
the current object stored in memory at any one moment. But when we create a
container, all the objects have to be stored in that container before we start
processing them.

For example, consider a program that processes log fi les. A very simple log might
contain information in this format:

Jan 26, 2010 11:25:25 DEBUG This is a debugging message.
Jan 26, 2010 11:25:36 INFO This is an information method.
Jan 26, 2010 11:25:46 WARNING This is a warning. It could be
serious.
Jan 26, 2010 11:25:52 WARNING Another warning sent.
Jan 26, 2010 11:25:59 INFO Here's some information.
Jan 26, 2010 11:26:13 DEBUG Debug messages are only useful if
you want to figure something out.
Jan 26, 2010 11:26:32 INFO Information is usually harmless,
but helpful.
Jan 26, 2010 11:26:40 WARNING Warnings should be heeded.
Jan 26, 2010 11:26:54 WARNING Watch for warnings.

Log fi les for popular web servers, databases, or e-mail servers can contain many
gigabytes of data. If we want to process each line in the log, we don't want to use a
list comprehension on those lines; it would create a list containing every line in the
fi le. This probably wouldn't fi t in memory and could bring the computer to its knees,
depending on the operating system.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[202]

If we used a for loop on the log fi le, we could process one line at a time before
reading the next one into memory. Wouldn't be nice if we could use comprehension
syntax to get the same effect?

 This is where generator expressions come in. They use the same syntax as
comprehensions, but they don't create a fi nal container object. To create a
generator expression, wrap the comprehension in () instead of [] or {}.

The following code parses a log fi le in the previously presented format, and outputs
a new log fi le that contains only the WARNING lines:

import sys

inname = sys.argv[1]
outname = sys.argv[2]

with open(inname) as infile:
 with open(outname, "w") as outfile:
 warnings = (l for l in infile if 'WARNING' in l)
 for l in warnings:
 outfile.write(l)

This program takes the two fi lenames on the command line, uses a generator
expression to fi lter out the warnings (in this case, it uses the if syntax, and leaves
the line unmodifi ed), and then outputs the warnings to another fi le. If we run it on
our sample fi le, the output looks like this:

Jan 26, 2010 11:25:46 WARNING This is a warning. It could be
serious.
Jan 26, 2010 11:25:52 WARNING Another warning sent.
Jan 26, 2010 11:26:40 WARNING Warnings should be heeded.
Jan 26, 2010 11:26:54 WARNING Watch for warnings.

Of course, with such a short input fi le, we could have safely used a list
comprehension, but if the fi le is millions of lines long, the generator expression
will have a huge impact on both memory and speed.

Generator expressions can also be useful inside function calls. For example,
we can call sum, min, or max on a generator expression instead of a list, since these
functions process one object at a time. We're only interested in the result, not any
intermediate container.

In general, a generator expression should be used whenever possible. If we don't
actually need a list, set, or dictionary, but simply need to fi lter or convert items in a
sequence, a generator expression will be most effi cient. If we need to know the length
of a list, or sort the result, remove duplicates, or create a dictionary, we'll have to use
the comprehension syntax.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[203]

Generators
 Generator expressions are actually a sort of comprehension too; they compress the
more advanced (this time it really is more advanced!) generator syntax into one line.
The greater generator syntax looks even less object-oriented than anything we've
seen, but we'll discover that once again, it is a simple syntax shortcut to create a kind
of object.

Let's take the log fi le example a little further. If we want to delete the WARNING
column from our output fi le (since it's redundant; this fi le contains only warnings),
we have several options, at various levels of readability. We can do it with a
generator expression:

import sys
inname, outname = sys.argv[1:3]

with open(inname) as infile:
 with open(outname, "w") as outfile:
 warnings = (l.replace('\tWARNING', '')

 for l in infile if 'WARNING' in l)

 for l in warnings:
 outfile.write(l)

That's perfectly readable, though I wouldn't want to make the expression any more
complicated than that. We could also do it with a normal for loop:

import sys
inname, outname = sys.argv[1:3]

with open(inname) as infile:
 with open(outname, "w") as outfile:
 for l in infile:

 if 'WARNING' in l:

 outfile.write(l.replace('\tWARNING', ''))

That's maintainable, but so many levels of indent in so few lines is kind of ugly. Now
let's consider a truly object-oriented solution, without any shortcuts:

import sys
inname, outname = sys.argv[1:3]

class WarningFilter:

 def __init__(self, insequence):

 self.insequence = insequence

 def __iter__(self):

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[204]

 return self

 def __next__(self):

 l = self.insequence.readline()

 while l and 'WARNING' not in l:

 l = self.insequence.readline()

 if not l:

 raise StopIteration

 return l.replace('\tWARNING', '')

with open(inname) as infile:
 with open(outname, "w") as outfile:
 filter = WarningFilter(infile)
 for l in filter:
 outfile.write(l)

 No doubt about it: that is ugly and diffi cult to read. What is happening here? Well,
we created an object that takes a fi le object as input, and then provides a __next__
method to allow it to work as an iterator in for loops. That method reads lines from
the fi le, discarding them if they are not WARNING lines. When it encounters a WARNING
line, it returns it, and the for loop will call __next__ again to get the next line. When
we run out of lines, we raise StopIteration to tell the loop we're fi nished. It's pretty
ugly compared to the other examples, but it's also powerful; now that we have a
class in our hands, we can do whatever we want to it.

With that background behind us, we fi nally get to see generators in action. This next
example does exactly the same thing as the previous one: it creates an object that
allows us to loop over the input:

import sys
inname, outname = sys.argv[1:3]

def warnings_filter(insequence):

 for l in insequence:

 if 'WARNING' in l:

 yield l.replace('\tWARNING', '')

with open(inname) as infile:
 with open(outname, "w") as outfile:
 filter = warnings_filter(infile)
 for l in filter:
 outfile.write(l)

OK, that's pretty readable, maybe... at least it's short. But what on earth is going on
here, it doesn't make sense. And what is yield, anyway?

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[205]

Last question fi rst: yield is the key to generators. When Python sees yield in a
function, it takes that function and wraps it up in an object not unlike the one in our
previous example. Think of the yield statement as similar to the return statement;
it exits the function and returns a line. Unlike return, when the function is called
again, it will start where it left off; on the line after the yield statement. In this
example, there is no line after the yield statement, so it jumps to the next iteration of
the for loop. Since the yield statement is inside an if statement, it only yields lines
that contain WARNING.

While it looks like that function is simply looping over the lines, it is really creating
an object; a generator object:

>>> print(warnings_filter([]))

<generator object warnings_filter at 0xb728c6bc>

 I passed an empty list into the function to act as an iterator. All the function does
is create and return a generator object. That object has __iter__ and __next__
methods on it, much like the one we created in the previous example. Whenever
__next__ is called, the generator runs the function until it fi nds a yield statement. It
then returns the value from yield, and the next time __next__ is called, it picks up
where it left off.

This use of generators isn't that advanced, but if you don't realize the function is
creating an object, it can seem magical. We can even have multiple calls to yield in
a single function; it will simply pick up at the most recent yield and continue to the
next one.

There is even more to generators than what we have covered. We can send values
back into generators when calling yield, turning them into a dark art called
coroutines. While technically objects, coroutines encourage us to think very
differently from the object-oriented principles we've been discussing, and are beyond
the scope of this book. Do a search if you are interested in learning more about them.

An alternative to method overloading
 One prominent feature of many object-oriented programming languages is a tool
called method overloading. Method overloading simply refers to having multiple
methods with the same name that accept different sets of arguments. In statically
typed languages, this is useful if we want to have a method that accepts either an
integer or a string, for example. In non-object-oriented languages we might need two
functions called add_s and add_i to accommodate such situations. In statically typed
object-oriented languages, we'd need two methods, both called add, one that accepts
strings, and one that accepts integers.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[206]

In Python, we only need one method, which accepts any type of object. It may have
to do some testing on the object type (for example, if it is a string, convert it to an
integer), but only one method is required.

However, method overloading is also useful when we want a method with the
same name to accept different numbers or sets of arguments. For example, an e-mail
message method might come in two versions, one of which accepts an argument for
the from e-mail address. The other method might look up a default from address
instead. Python doesn't permit multiple methods with the same name, but it does
provide a different, equally fl exible, interface.

We've seen some of the possible ways to send arguments to methods and functions
in previous examples, but now we'll cover all the details. The simplest function
accepts no arguments. We probably don't need an example, but here's one for
completeness:

def no_args():
 pass

and here's how it's called:

no_args()

A function that does accept arguments will provide the names of those arguments in
a comma-separated list. Only the name of each argument needs to be supplied.

When calling the function, these positional arguments must be specifi ed in order,
and none can be missed or skipped. This is the most common way we've specifi ed
arguments in our previous examples:

def mandatory_args(x, y, z):
 pass

and to call it:

mandatory_args("a string", a_variable, 5)

Any type of object can be passed as an argument: an object, a container, a primitive,
even functions and classes. The above call shows a hard-coded string, an unknown
variable, and an integer passed into the function.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[207]

Default arguments
 If we want to make an argument optional, rather than creating a second method with
a different set of arguments, we can specify a default value in a single method, using
an equals sign. If the calling code does not supply this argument, it will be assigned
a default value. However, the calling code can still choose to override the default by
passing in a different value. Often, a default value of None, or an empty string or list
is suitable.

Here's a function defi nition with default arguments:

def default_arguments(x, y, z, a="Some String", b=False):
 pass

The fi rst three arguments are still mandatory and must be passed by the calling code.
The last two parameters have default arguments supplied.

There are several ways we can call this function. We can supply all arguments in
order, as though all the arguments were positional arguments.

kwargs("a string", variable, 8, "", True)

 Or we can supply just the mandatory arguments in order, leaving the keyword
arguments to be assigned their default values:

kwargs("a longer string", some_variable, 14)

We can also use the equals sign syntax when calling a function to provide values in a
different order or to skip default values that we aren't interested in. For example, we
can skip the fi rst keyword arguments and supply the second one:

kwargs("a string", variable, 14, b=True)

Surprisingly, we can even use the equals sign syntax to mix up the order of
positional arguments, so long as all of them are supplied.

>>> kwargs(y=1,z=2,x=3,a="hi")

3 1 2 hi False

With so many options, it may seem hard to pick one, but if you think of the
positional arguments as an ordered list, and keyword arguments as sort of like a
dictionary, you'll fi nd that the correct layout tends to fall into place. If you need to
require the caller to specify an argument, make it mandatory; if you have a sensible
default, then make it a keyword argument. Choosing how to call the method
normally takes care of itself, depending on which values need to be supplied,
and which can be left at their defaults.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[208]

One thing to take note of with keyword arguments is that anything we provide as a
default argument is evaluated when the function is fi rst interpreted, not when it is
called. This means we can't have dynamically generated default values. For example,
the following code won't behave quite as expected:

number = 5
def funky_function(number=number):

 print(number)

number=6
funky_function(8)
funky_function()
print(number)

If we run this code, it outputs the number 8, fi rst, but then it outputs the number 5
for the call with no arguments. We had set the variable to the number 6, as evidenced
by the last line of output, but when the function is called, the number 5 is printed; the
default value was calculated when the function was defi ned, not when it was called.

This is tricky with empty containers. For example, it is common to ask calling code
to supply a list that our function is going to manipulate, but the list is optional. We'd
like to make an empty list as a default argument. We can't do this; it will create only
one list, when the code is fi rst constructed:

>>> def hello(b=[]):

... b.append('a')

... print(b)

...

>>> hello()

['a']

>>> hello()

['a', 'a']

Whoops, that's not quite what we expected! The usual way to get around this is to
make the default value None, and then use the idiom if argument is None: arg = []
inside the method. Pay close attention!

Variable argument lists
 Default values alone do not allow us all the fl exible benefi ts of method overloading.
The thing that makes Python really slick is the ability to write methods that accept
an arbitrary number of positional or keyword arguments without explicitly naming
them. We can also pass arbitrary lists and dictionaries into such functions.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[209]

For example, a function to accept a link or list of links and download the web pages
could use such variadic arguments, or varargs . Instead of accepting a single value
that is expected to be a list of links, we can accept an arbitrary number of arguments,
where each argument is a different link. We do this by specifying the * operator in
the function defi nition:

def get_pages(*links):

 for link in links:
 #download the link with urllib
 print(link)

The *links says "I'll accept any number of arguments and put them all in a list
of strings named links". If we supply only one argument, it'll be a list with one
element, if we supply no arguments, it'll be an empty list. Thus, all these function
calls are valid:

get_pages()
get_pages('http://www.archlinux.org')
get_pages('http://www.archlinux.org',
 'http://ccphillips.net/')

We can also accept arbitrary keyword arguments. These arrive into the function as
a dictionary. They are specifi ed with two asterisks (as in **kwargs) in the function
declaration. This tool is commonly used in confi guration setups. The following class
allows us to specify a set of options with default values:

class Options:
 default_options = {
 'port': 21,
 'host': 'localhost',
 'username': None,
 'password': None,
 'debug': False,
 }
 def __init__(self, **kwargs):

 self.options = dict(Options.default_options)
 self.options.update(kwargs)

 def __getitem__(self, key):
 return self.options[key]

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[210]

 All the interesting stuff in this class happens in the __init__ method. We have a
dictionary of default options and values at the class level. The fi rst thing the __init__
method does is make a copy of this dictionary. We do that instead of modifying the
dictionary directly in case we instantiate two separate sets of options. (Remember,
class level variables are shared between instances of the class.) Then, __init__ uses
the update method on the new dictionary to change any non-default values to those
supplied as keyword arguments. The __getitem__ method simply allows us to use
the new class using indexing syntax. Here's a session demonstrating the class
in action:

>>> options = Options(username="dusty", password="drowssap",

 debug=True)

>>> options['debug']

True

>>> options['port']

21

>>> options['username']

'dusty'

We're able to access our options instance using dictionary indexing syntax,
and the dictionary includes both default values and the ones we set using
keyword arguments.

The keyword argument syntax can be dangerous, as it may break the "explicit
is better than implicit" rule. In the above example, it's possible to pass arbitrary
keyword arguments to the Options initializer to represent options that don't exist in
the default dictionary. This may not be a bad thing, depending on the purpose of the
class, but it makes it hard for someone using the class to discover what valid options
are available. It also makes it easy to enter a confusing typo ("Debug" instead of
"debug", for example) that adds two options where only one should have existed.

The above example is not that bad if we instruct the user of the class to only pass
default options (we could even add some code to enforce this rule). The options are
documented in the class defi nition so it'll be easy to look them up.

Keyword arguments are also very useful when we need to accept arbitrary
arguments to pass to a second function, but we don't know what those arguments
will be. We saw this in action in Chapter 3, when we were building support for
multiple inheritance.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[211]

 We can, of course, combine the variable argument and variable keyword argument
syntax in one function call, and we can use normal positional and default arguments
as well. The following example is somewhat contrived, but demonstrates the four
types in action:

import shutil
import os.path
def augmented_move(target_folder, *filenames,

 verbose=False, **specific):

 '''Move all filenames into the target_folder, allowing
 specific treatment of certain files.'''

 def print_verbose(message, filename):
 '''print the message only if verbose is enabled'''
 if verbose:
 print(message.format(filename))

 for filename in filenames:

 target_path = os.path.join(target_folder, filename)
 if filename in specific:

 if specific[filename] == 'ignore':
 print_verbose("Ignoring {0}", filename)
 elif specific[filename] == 'copy':
 print_verbose("Copying {0}", filename)
 shutil.copyfile(filename, target_path)
 else:
 print_verbose("Moving {0}", filename)
 shutil.move(filename, target_path)

This example will process an arbitrary list of fi les. The fi rst argument is a target
folder, and the default behavior is to move all remaining non-keyword argument
fi les into that folder. Then there is a keyword-only argument, verbose, which tells
us whether to print information on each fi le processed. Finally, we can supply a
dictionary containing actions to perform on specifi c fi lenames; the default behavior
is to move the fi le, but if a valid string action has been specifi ed in the keyword
arguments, it can be ignored or copied instead. Notice the ordering of the parameters
in the function; fi rst the positional argument is specifi ed, then the *filenames list,
then any specifi c keyword-only arguments, and fi nally, a **specific dictionary to
hold remaining keyword arguments.

We create an inner helper function, print_verbose, which will print messages only
if the verbose key has been set. This function keeps code readable by encapsulating
this functionality into a single location.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[212]

In common cases, this function would likely be called as:

>>> augmented_move("move_here", "one", "two")

 This command would move the fi les one and two into the move_here directory,
assuming they exist (There's no error checking or exception handling in the function,
so it would fail spectacularly if the fi les or target directory didn't exist). The move
would occur without any output, since verbose is False by default.

If we want to see the output, we can call it with:

>>> augmented_move("move_here", "three", verbose=True)

Moving three

This moves one fi le, named three, and tells us what it's doing. Notice that it is
impossible to specify verbose as a positional argument in this example; we must
pass a keyword argument. Otherwise Python would think it was another fi lename in
the *filenames list.

If we want to copy or ignore some of the fi les in the list, instead of moving them, we
can pass additional keyword arguments:

>>> augmented_move("move_here", "four", "five", "six",

 four="copy", five="ignore")

This will move the sixth fi le and copy the fourth, but won't display any output, since
we didn't specify verbose. Of course, we can do that, too, and keyword arguments
can be supplied in any order:

>>> augmented_move("move_here", "seven", "eight", "nine",

 seven="copy", verbose=True, eight="ignore")

Copying seven

Ignoring eight

Moving nine

Unpacking arguments
 There's one more nifty trick involving variable arguments and keyword arguments.
We've used it in some of our previous examples, but it's never too late for an
explanation. Given a list or dictionary of values, we can pass those values into a
function as if they were normal positional or keyword arguments. Have a look
at this code:

def show_args(arg1, arg2, arg3="THREE"):
 print(arg1, arg2, arg3)

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[213]

some_args = range(3)
more_args = {
 "arg1": "ONE",
 "arg2": "TWO"}

print("Unpacking a sequence:", end=" ")
show_args(*some_args)

print("Unpacking a dict:", end=" ")
show_args(**more_args)

Here's what it looks like when we run it:

Unpacking a sequence: 0 1 2

Unpacking a dict: ONE TWO THREE

 The function accepts three arguments, one of which has a default value. But when
we have a list of three arguments, we can use the * operator inside a function call to
unpack it into the three arguments. If we have a dictionary of arguments, we can use
the ** syntax to unpack it as a collection of keyword arguments.

This is most often useful when mapping information that has been collected from
user input or from an outside source (an internet page, a text fi le) to a function or
method call.

Remember our earlier example that used headers and lines in a text fi le to create a
list of dictionaries with contact information? Instead of just adding the dictionaries
to a list, we could use keyword unpacking to pass the arguments to the __init__
method on a specially built Contact object that accepts the same set of arguments.
See if you can adapt the example to make this work.

Functions are objects too
 Programming languages that over-emphasize object-oriented principles tend to
frown on functions that are not methods. In such languages, you're expected to
create an object to sort of wrap the single method involved. There are numerous
situations where we'd like to pass around a small object that is simply called to
perform an action. This is most frequently done in event-driven programming, such
as graphical toolkits or asynchronous servers; we'll see some design patterns that use
it in the next two chapters.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[214]

In Python, we don't need to wrap such methods in an object, because functions
already are objects! We can set attributes on functions (though this isn't a common
activity), and we can pass them around to be called at a later date. They even
have a few special properties that can be accessed directly. Here's yet another
contrived example:

def my_function():
 print("The Function Was Called")
my_function.description = "A silly function"

def second_function():
 print("The second was called")
second_function.description = "A sillier function."

def another_function(function):
 print("The description:", end=" ")
 print(function.description)

 print("The name:", end=" ")
 print(function.__name__)

 print("The class:", end=" ")
 print(function.__class__)

 print("Now I'll call the function passed in")
 function()

another_function(my_function)
another_function(second_function)

 If we run this code, we can see that we were able to pass two different functions into
our third function, and get different output for each one:

The description: A silly function
The name: my_function
The class: <class 'function'>
Now I'll call the function passed in
The Function Was Called
The description: A sillier function.
The name: second_function
The class: <class 'function'>
Now I'll call the function passed in
The second was called

We set an attribute on the function, named description (not very good
descriptions, admittedly). We were also able to see the function's __name__ attribute,
and to access its class, demonstrating that the function really is an object with
attributes. Then we called the function by using the callable syntax (the parentheses).

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[215]

The fact that functions are top-level objects is most often used to pass them around to
be executed at a later date, for example, when a certain condition has been satisfi ed.
Let's build an event-driven timer that does just this:

import datetime
import time

class TimedEvent:
 def __init__(self, endtime, callback):
 self.endtime = endtime
 self.callback = callback

 def ready(self):
 return self.endtime <= datetime.datetime.now()

class Timer:
 def __init__(self):
 self.events = []

 def call_after(self, delay, callback):

 end_time = datetime.datetime.now() + \
 datetime.timedelta(seconds=delay)

 self.events.append(TimedEvent(end_time, callback))

 def run(self):
 while True:
 ready_events = (e for e in self.events if e.ready())
 for event in ready_events:
 event.callback(self)

 self.events.remove(event)
 time.sleep(0.5)

 In production, this code should defi nitely have extra documentation using
docstrings! The call_after method should at least mention that the delay is in
seconds and that the callback function should accept one argument: the timer
doing the calling.

We have two classes here. The TimedEvent class is not really meant to be accessed
by other classes; all it does is store an endtime and callback. We could even use a
tuple or namedtuple here, but as it is convenient to give the object a behavior that
tells us whether or not the event is ready to run, we use a class instead.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[216]

The Timer class simply stores a list of upcoming events. It has a call_after method
to add a new event. This method accepts a delay parameter representing the
number of seconds to wait before executing the callback, and the callback itself:
a function to be executed at the correct time. This callback function should accept
one argument.

The run method is very simple; it uses a generator expression to fi lter out any events
whose time has come, and executes them in order. The timer loop then continues
indefi nitely, so it has to be interrupted with a keyboard interrupt (Ctrl + C or Ctrl +
Break). We sleep for half a second after each iteration so as to not grind the system to
a halt.

The important things to note here are the lines that touch callback functions.
The function is passed around like any other object and the timer never knows or
cares what the original name of the function is or where it was defi ned. When it's
time to call the function, the timer simply applies the parenthesis syntax to the
stored variable.

Here's a set of callbacks that test the timer:

from timer import Timer
import datetime

def format_time(message, *args):
 now = datetime.datetime.now().strftime("%I:%M:%S")
 print(message.format(*args, now=now))

def one(timer):
 format_time("{now}: Called One")

def two(timer):
 format_time("{now}: Called Two")

def three(timer):
 format_time("{now}: Called Three")

class Repeater:
 def __init__(self):
 self.count = 0
 def repeater(self, timer):
 format_time("{now}: repeat {0}", self.count)
 timer.call_after(5, self.repeater)

timer = Timer()
timer.call_after(1, one)

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[217]

timer.call_after(2, one)
timer.call_after(2, two)
timer.call_after(4, two)
timer.call_after(3, three)
timer.call_after(6, three)
repeater = Repeater()
timer.call_after(5, repeater.repeater)
format_time("{now}: Starting")
timer.run()

 This example allows us to see how multiple callbacks interact with the timer. The
fi rst function is the format_time function . It uses the string format method to
add the current time to the message, and illustrates variable arguments in action.
The format_time method will accept any number of positional arguments, using
variable argument syntax, which are then forwarded as positional arguments to
the string's format method. After that we create three simple callback methods that
simply output the current time and a short message telling us which callback has
been fi red.

The Repeater class demonstrates that methods can be used as callbacks too, since
they are really just functions. It also shows why the timer argument to the callback
functions is useful: we can add a new timed event to the timer from inside a
presently running callback.

 Then we simply create a timer and add several events to it that are called after
different amounts of time. Then we start the timer running; the output shows that
events are run in the expected order:

02:53:35: Starting
02:53:36: Called One
02:53:37: Called One
02:53:37: Called Two
02:53:38: Called Three
02:53:39: Called Two
02:53:40: repeat 0
02:53:41: Called Three
02:53:45: repeat 1
02:53:50: repeat 2
02:53:55: repeat 3
02:54:00: repeat 4

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[218]

Using functions as attributes
 One of the interesting effects of functions being objects is that they can be set as
callable attributes on other objects. It is possible to add or change a function to an
instantiated object:

class A:
 def print(self):
 print("my class is A")

def fake_print():
 print("my class is not A")

a = A()
a.print()
a.print = fake_print

a.print()

This code creates a very simple class with a print method that doesn't tell us
anything we don't know. Then we create a new function that tells us something
we don't believe.

When we call print on an instance of the A class, it behaves as expected. If we
then set the print method to point at a new function, it tells us something different:

my class is A
my class is not A

It is also possible to replace methods on classes, instead of objects, although in that
case we have to add the self argument to the parameter list. This will change the
method for all instances of that object, even ones that have already been instantiated.

 Obviously, replacing methods like this can be very dangerous and confusing to
maintain. Somebody reading the code will see that a method has been called, and
look up that method on the original class. But the method on the original class is not
the one that was called. Figuring out what really happened can become a very tricky
debugging session.

It does have its uses though. Often, replacing or adding methods at run time (called
monkey-patching) is used in automated testing. If testing a client-server application,
we may not want to actually connect to the server when testing the client; that may
result in accidental transfers of funds or embarrassing test e-mails being sent to real
people. Instead, we can set up our test code to replace some of the key methods on
the object that sends requests to the server, so it only records that the methods have
been called.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[219]

Monkey-patching can also be used to fi x bugs or add features in third-party code that
we are interacting with and does not behave quite the way we need it to. It should,
however, be applied sparingly, it's almost always a "messy hack". Sometimes,
though, it is the only way to adapt an existing library to suit our needs.

Callable objects
 Since functions are just objects that happen to respond to the call syntax, we start to
wonder if it's possible to write objects that can be called yet aren't real functions. Yes,
of course!

Any object can be turned into a callable, as easily as giving it a __call__ method
that accepts the required arguments. Let's make our Repeater class from the timer
example a little easier to use by making it a callable:

class Repeater:
 def __init__(self):
 self.count = 0
 def __call__(self, timer):

 format_time("{now}: repeat {0}", self.count)
 self.count += 1
 timer.call_after(5, self)

timer = Timer()
timer.call_after(5, Repeater())

format_time("{now}: Starting")
timer.run()

This example isn't much different from the earlier class; all we did was change the
name of the repeater function to __call__ and pass the object itself as a callable.
Note that when we make the call_after call, we pass the argument Repeater().
Those two parentheses are creating a new instance of the class, they are not explicitly
calling the class. That happens later, inside the timer. If we want to execute the
__call__ method on a newly instantiated object, we'd use a rather odd syntax:
Repeater()(). The fi rst set of parentheses constructs the object; the second set
executes the __call__ method.

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[220]

Case study
 To tie together some of the principles presented in this chapter, let's build a mailing
list manager. The manager will keep track of e-mail addresses categorized into
named groups. When it's time to send a message, we can pick a group and send the
message to all e-mail addresses assigned to that group.

Now, before we start working on this project, we ought to have a safe way to test it,
without sending e-mails to a bunch of real people. Luckily, Python has our back here;
like the test HTTP server, it has a built in Simple Mail Transfer Protocol (SMTP)
server that we can instruct to capture any messages we send without actually
sending them. We can run the server with the following command:

python -m smtpd -n -c DebuggingServer localhost:1025

Running this command at a command prompt will start an SMTP server running on
port 1025 on the local machine. But we've instructed it to use the DebuggingServer
class (it comes with the built-in SMTP module), which, instead of sending mails
to the intended recipients, simply prints them on the terminal screen as it receives
them. Neat, eh?

Now, before writing our mailing list, let's write some code that actually sends mail.
Of course, Python supports this in the standard library too, but it's a bit of an odd
interface, so we'll write a new function to wrap it all cleanly:

import smtplib
from email.mime.text import MIMEText

def send_email(subject, message, from_addr, *to_addrs,

 host="localhost", port=1025, **headers):

 email = MIMEText(message)
 email['Subject'] = subject
 email['From'] = from_addr
 for header, value in headers.items():
 email[header] = value

 sender = smtplib.SMTP(host, port)
 for addr in to_addrs:
 del email['To']
 email['To'] = addr
 sender.sendmail(from_addr, addr, email.as_string())
 sender.quit()

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[221]

 We won't cover the code inside this method too thoroughly; the documentation in
the standard library can give you all the information you need to use the smtplib
and email modules effectively.

We've used both variable argument and keyword argument syntax in the function
call; any unknown arguments are mapped to extra addresses to send to; any extra
keyword arguments are mapped to e-mail headers.

The headers passed into the function represent auxiliary headers that can be
attached to a method. Such headers might include Reply-To, Return-Path,
or X-pretty-much-anything. Can you see a problem here?

Any valid identifi er in Python cannot include the - character. In general, that
character represents subtraction. So it's not possible to call a function with
Reply-To = my@email.com. Perhaps we were too eager to use keyword
arguments because they are a new tool we just learned this chapter?

We'll have to change the argument to a normal dictionary; this will work because
any string can be used as a key in a dictionary. By default, we'd want this dictionary
to be empty, but we can't make the default parameter an empty dictionary. No,
we'll have to make the default argument None, and then set up the dictionary
at the beginning of the method:

def send_email(subject, message, from_addr, *to_addrs,
 host="localhost", port=1025, headers=None):

 headers = {} if headers is None else headers

If we have our debugging SMTP server running in one terminal, we can test this
code in a Python interpreter:

>>> send_email("A model subject", "The message contents",

 "from@example.com", "to1@example.com", "to2@example.com")

Then if we check the output from the debugging SMTP server, we get the following:

---------- MESSAGE FOLLOWS ----------
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Subject: A model subject
From: from@example.com
To: to1@example.com
X-Peer: 127.0.0.1

The message contents

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[222]

------------ END MESSAGE ------------
---------- MESSAGE FOLLOWS ----------
Content-Type: text/plain; charset="us-ascii"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Subject: A model subject
From: from@example.com
To: to2@example.com
X-Peer: 127.0.0.1

The message contents
------------ END MESSAGE ------------

Excellent, it has "sent" our e-mail to the two correct addresses with subject and
message contents included.

 Now that we can send messages, let's work on the e-mail group management system.
We'll need an object that somehow matches e-mail addresses with the groups they
are in. Since this is a many-to-many relationship (any one e-mail address can be in
multiple groups, any one group can be associated with multiple e-mail addresses),
none of the data structures we've studied seem quite ideal. We could try a dictionary
of group-names matched to a list of associated e-mail addresses, but that would
duplicate e-mail addresses. We could also try a dictionary of e-mail addresses
matched to groups, resulting in a duplication of groups. Neither seems optimal. Let's
try this latter version, even though intuition tells me the groups to e-mail address
solution would be more straightforward.

Since the values in our dictionary will always be collections of unique e-mail
addresses, we should probably store them in a set. We can use defaultdict to
ensure there is always a set available for each key:

from collections import defaultdict
class MailingList:
 '''Manage groups of e-mail addresses for sending e-mails.'''
 def __init__(self):
 self.email_map = defaultdict(set)

 def add_to_group(self, email, group):
 self.email_map[email].add(group)

Now let's add a method that allows us to collect all the e-mail addresses in one or
more groups. We can use a set comprehension to take care of this easily:

 def emails_in_groups(self, *groups):
 groups = set(groups)
 return {e for (e, g) in self.email_map.items()
 if g & groups}

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[223]

 OK, that set comprehension needs explaining, doesn't it? First look at what we're
iterating over: self.email_map.items(). That method, of course, returns a tuple
of key-value pairs for each item in the dictionary. The values are sets of strings
representing the groups. We split these into two variables named e and g, short for
e-mail and groups. We only return the key (the e-mail address) for each item though,
since the desired output is a set of e-mail addresses.

The only thing left that may not make sense is the condition clause. This clause
simply intersects the groups set with the set of groups associated with the e-mails.
If the result is non-empty, the e-mail gets added, otherwise, it is discarded. The g &
groups syntax is a shortcut for g.intersection(groups); the set class does this by
implementing the special method __and__ to call intersection.

Now, with these building blocks, we can trivially add a method to our MailingList
class that sends e-mail to specifi c groups:

def send_mailing(self, subject, message, from_addr,
 *groups, **kwargs):
 emails = self.emails_in_groups(*groups)
 send_email(subject, message, from_addr,
 *emails, **kwargs)

This function stresses on variable arguments. As input, it takes a list of groups as
variable arguments, and optional keyword arguments as a dictionary. It doesn't
care about the keyword arguments at all; it simply passes those arguments on to
the send_email function we defi ned earlier. It then gets the list of e-mails for the
specifi ed groups, and passes those as variable arguments into send_email.

The program can be tested by ensuring the SMTP debugging server is running in one
command prompt, and, in a second prompt, load the code using:

>>> python -i mailing_list.py

Create a MailingList object with:

>>> m = MailingList()

Then create a few fake e-mail addresses and groups, along the lines of:

>>> m.add_to_group("friend1@example.com", "friends")

>>> m.add_to_group("friend2@example.com", "friends")

>>> m.add_to_group("family1@example.com", "family")

>>> m.add_to_group("pro1@example.com", "professional")

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Python Object-oriented Shortcuts

[224]

Finally, use a command like this to send e-mails to specifi c groups:

>>> m.send_mailing("A Party",

"Friends and family only: a party", "me@example.com", "friends",

"family", headers={"Reply-To": "me2@example.com"})

E-mails to each of the addresses in the specifi ed groups should show up in the
console on the SMTP server.

Exercises
If you don't use comprehensions in your daily coding very often, the fi rst thing you
should do is search through some existing code and fi nd some for loops. See if any
of them can be trivially converted to a generator expression or a list, set, or dictionary
comprehension.

Test the claim that list comprehensions are faster than for loops. This can be done
with the built-in timeit module. Use the help documentation for the timeit.
timeit function to fi nd out how to use it. Basically, write two functions that do the
same thing, one using a list comprehension, and one using a for loop. Pass each
function into timeit.timeit, and compare the results. If you're feeling adventurous,
compare generators and generator expressions as well. Testing code using timeit
can become addictive, so bear in mind that code does not need to be hyper-fast
unless it's being executed an immense number of times, such as on a huge input list
or log fi le.

Try writing the case study using groups as dictionary keys and lists of e-mail
addresses as the values. You'll likely be surprised at how little needs to be changed.
If you're interested, try reworking it to accept fi rst and last names as well as e-mail
addresses. Then allow customizing e-mail messages (use str.format) to have the
person's fi rst or last name in each message.

Except the send_mailing method itself, the MailingList object is really quite
generic. Consider what needs to be done to make it perform any generic activity on
each e-mail address, instead of just sending mail. Hint: callback functions will be
very useful.

Play around with generator functions. Start with basic iterators that require multiple
values (mathematical sequences are canonical examples; the Fibonacci sequence is
overused if you can't think of anything better). Try some more advanced generators
that do things like take multiple input lists and somehow yield values that merge
them. Generators can also be used on fi les; can you write a simple generator that
shows those lines that are identical in two fi les?

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Chapter 7

[225]

Summary
We covered several very different topics in this chapter. Each represented an
important non-object-oriented feature that is popular in Python. Just because
we can use object-oriented principles does not always mean we should!

However, we also saw that "the Python way" often just provides a shortcut to
traditional object-oriented syntax. Knowing the object-oriented principles
underlying these tools allows us to use them effectively in our own classes.

We covered:

Built-in functions
Comprehensions and generators
Function arguments, variable arguments, and keyword arguments
Callback functions and callable objects

In the next chapter, we're going to study design patterns; building blocks that
object-oriented programmers use to create maintainable applications. In many cases,
we'll see that, as in this chapter, Python provides syntax for popular design patterns
that we can use instead.

•

•

•

•

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book

Where to buy this book
You can buy Python 3 Object Oriented Programming from the Packt Publishing website:
https://www.packtpub.com/python-3-object-oriented-

programming/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

P U B L I S H I N G

community experience dist i l led

www.PacktPub.com

For More Information:
www.PacktPub.com/python-3-object-oriented-programming/book

https://www.packtpub.com/python-3-object-oriented-programming/book
https://www.packtpub.com/Shippingpolicy

